Distributed-Parameter Port-Hamiltonian Systems

نویسندگان

  • Hans Zwart
  • Birgit Jacob
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit Simplicial Discretization of Distributed-Parameter Port-Hamiltonian Systems

Simplicial Dirac structures as finite analogues of the canonical Stokes-Dirac structure, capturing the topological laws of the system, are defined on simplicial manifolds in terms of primal and dual cochains related by the coboundary operators. These finite-dimensional Dirac structures offer a framework for the formulation of standard input-output finite-dimensional portHamiltonian systems that...

متن کامل

Port-Hamiltonian systems: an introductory survey

The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian systems is based on the canonical symplectic structure of the phase space or on a Poisson struct...

متن کامل

Port-Hamiltonian formulation of shallow water equations with coriolis force and topography∗

Port based network modeling of complex lumped parameter physical systems naturally leads to a generalized Hamiltonian formulation of its dynamics. The resulting class of open dynamical systems are called “Port-Hamiltonian systems” [12] which are defined using a Dirac structure, the Hamiltonian and dissipative elements. This formulation has been successfully extended to classes of distributed pa...

متن کامل

Port-Hamiltonian systems on discrete manifolds

This paper offers a geometric framework for modeling port-Hamiltonian systems on discrete manifolds. The simplicial Dirac structure, capturing the topological laws of the system, is defined in terms of primal and dual cochains related by the coboundary operators. This finitedimensional Dirac structure, as discrete analogue of the canonical Stokes-Dirac structure, allows for the formulation of f...

متن کامل

Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems

Port-based network modeling of (lumped-parameter) physical systems leads directly to their representation as port-Hamiltonian systems which are an important class of passive state-space systems. At the same time modeling of physical systems often leads to high-dimensional dy namical models. State-space dimensions are enormously high as well if distributed-parameter models are spatially discreti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009